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NUMERICAL SOLUTION OF THE PROBLEM OF IMPACT OF A
RIGID SPHERE ONTO A LINEAR VISCOELASTIC HALF-SPACE
AND COMPARISON WITH EXPERIMENT

Harry H. CALvIT*

Brown University, Providence, R.I.

Abstract—The pair of coupled nonlinear integro-differential equations which describe the impact of a rigid
sphere onto a viscoelastic half-space are solved numerically. Using data obtained from free torsional vibration
experiments, the rebound of a steel ball from a block of polymer is predicted for various temperatures. These
results are compared with rebound experiments performed on the same material. The viscoelastic solution is
also compared with elastic solutions and an approximate solution. Some conclusions are drawn on using the
rebound method as a means of dynamic testing.

INTRODUCTION

THE contact problem of a spherical indenter and a half-space represents a special set
of problems in the linear theory of viscoelasticity, that is, the mixed boundary value prob-
lem with time dependent boundaries. This problem is special in that solution through the
appeal to the similarity between the transformed viscoelastic equations and the equations
of elasticity breaks down due to the dependence of the boundary conditions on time.
(However this does not preclude the use of transform methods altogether as shown by
Ting [1])

The first attempt to extend the Hertz solution for the elastic case to the linear visco-
elastic case appears to be due to Pao [2]. Pao assumed that the difference in the contact
area between the elastic solution and the viscoelastic solution was negligible (this assump-
tion will be discussed later). He also assumed that the viscoelastic material was elastic
in bulk compression. Under these assumptions he was able to obtain a single integro-
differential equation which he solved numerically by assuming that the material had a
finite number of relaxation or retardation times.

Lee and Radok [3] presented a solution to the problem by replacing the elastic constants
in the solution to the associated elastic problem by viscoelastic functions. They then showed
that the solution satisfied the necessary boundary conditions. However, they discovered
that the solution for the penetration a(t) was only valid for aft) nondecreasing.

Hunter [4] later produced the first “general” solution which was valid for the case
where o(f) attained a single maximum.

Hunter’s results were obtained by a generalization of the Boussinesq solution and
entailed a solution of a pair of dual integral equations which arise frequently in mixed
boundary value problems of this type. In obtaining the equations that will be presented
later, he also assumed that the behavior of the material was identical in shear and in
dilatation, thus giving a Poisson’s ratio independent of time. Using a more direct approach,
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Graham [5] reproduced Hunter’s results as well as solutions for other geometries. He used
the generalized Papkovich Neuber stress function as a basis for his analysis.

Recently Ting {1] has shown that a generalized transform approach can also be used
successfully to obtain the solution to the contact problem. By assuming an alternative
boundary condition and applying the transform method, the problem can be solved
formally in terms of the unknown boundary condition which is then determined. Using
this method a solution to the contact problem with more than one maximum in the
penetration was obtained. Also in some cases Ting has shown that simpler integro-
differential equations are obtained through this approach.

INTEGRO-DIFFERENTIAL AND FINITE DIFFERENCE EQUATIONS

From the point of view of comparison with experiment, the solution of interest is the
one which produces «(t) and r,(t), the penetration and radius of contact, respectively,
since it is from these variables that one obtains the rebound height and the time that the
sphere is in contact with the half-space.

The solution obtained by Hunter is in the form of a single integro-differential equation
for monotone increasing penetration and a pair of coupled nonlinear integro-differential
equations for the withdrawal.

Since the equations have been obtained in several ways by different authors, they will
not be derived here.

If a ball of mass M and radius R is dropped onto a viscoelastic half-space whose mechani-
cal properties are given by u(t) (the relaxation function) and u~'(¢) (the creep function),
the governing equations are [4]; (See Fig. 1).

FiG. 1. Typical loading path for impact problem.

For0<t<i,
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and

a = ri(t)/R 2)

where v is Poisson’s ratio, and r,(t) is the current radius of contact.
For
e < 1 G)
Ra(t) = ri(1) —J” u“(t~t’)i,U ' u(t'—t”)i,,(rf(t”))dt”:l dr
tm darld e dt
and
() d
M) = _TIE(T——V)L ue— )55 de (4)

We might note that for the loading case (i.e. « increasing) the relation between of(r)
and ry(t) is identical with the elastic case. For unloading they differ (see Fig. 2) by the
double integral involving the viscoelastic functions.

r(t)

- —— - — — — =

! khd
jﬂ'mj ] = const
r'ﬂ
Fi1G. 2

If we take equation (1) and break up the integral into a finite number of integrals over
small increments of time we obtain

T+ 1
Mg ule—t ey de 5
0= s 3 -0 2 wiend ©)
Since p(t) is usually a smooth function we can approximate this expression by
8 R N ti+
Mi(t) = 3(1 2 ¥ =t rut—, | o ar ©)

M) = z Hue— 1)+ pt — 14 D[t ) —a(2)] 9]
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The most appropriate method to solve this equation appears to be a forward difference
to obtain o(T+ h), i.e.

2

(T+h) = oz(T)+ho'z(T)+%éé(T) (8)

Assume that a, &, & are known up to some time 7. Then from equation (8) it is possible to
calculate a( T+ h). Equation (7) is then used to obtain &(T+ h). From the following a(T+ k)
is obtained

o(T+h) = &(T)+ hd(T) 9)

The process is repeated to obtain a( T+ 2h), &(T+ 2h) and &(T+ 2h).

Since the initial conditions are at t = 0, a = 0, & = V, it is clear that the system is
explicit if solved in the proper sequence.

From the solution of this system of equations one obtains the curve in Fig. 1 up to
t =t,. At this point # = 0 and the calculation is stopped.

We now turn to equations (3) and (4) which are the governing system of equations.

Let

t d

F(t') =f u(t' ~t")——(r3(t") dt” (10)
0 dt

Then (3) becomes

dF

Ratt) = rio- | w05 (11
Assuming that () is smooth )
Roft) = ri(t)— _i Flult =)+ plt =t DIF (i1 )~ F(2))] (12)
and using the same procedure as before
F(t') = §N: e — )+ plt' — 174 DIre; 1) = r1()] (13)

1

W

1

It is clear that since the function F(t') depends on t,(t') [see definition of F(t), equation
(10)] which in turn is only known from the solution, that the system cannot be solved
explicitly for the unknown functions. However a solution can be obtained by an iteration
process which is described below.

If in equation (11) we take «ft,,+h) to be aft,+h) = alt,)—¢ then we can obtain
ri(t,+h) by an iteration. We know that r(t,,+ h) < r(t,,) for any finite h. Let

tmth dF(t/)

B = Ralt,+h)—rit,+h)+ J- u(t— t')—d—t,— dr’.

tm

By beginning the iteration with H¢,, + h) = r(t,,) we know that we are above the value which
makes B = 0. We slowly decrease r until B goes through zero.
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The choice of r(t,,+ h) uniquely defines t,(t,,+ h). To obtain the F(t) integral we merely
search through the table of solutions for ¢t < ¢, to determine between what two r’s the value
of r,(t,,+ h) lies. The integral to obtain F(T) entails summing the products

N
K(T) = Z T — 1)+ w(T—t,4 )13t ) —ri()]

i=1

For T = t,,+ h there will be only two terms in this sum. In general there will only be one
interval of non-standard width (see Fig. 2). In this figure we have shown what the picture
looks like if calculations have been carried to some arbitrary point t > ¢,,.

The dependence of the solution on the choice of ¢ and h will be discussed in a later
section.

NUMERICAL SOLUTIONS AND RESULTS

In order that there be some check on the solution of the integral equations, the ordinary
differential equation describing the elastic impact problem was solved using a second
order Euler method, i.e.

2
oofT+h) = oT)+ ho'c(T)+%—éi(T)

M&T+h) = Ka¥(T+h) K = material parameter

where the initial conditions are «(0) = 0, &(0) = V.

Then by making all the G{;) and J(t;)’s constant in the viscoelastic solution we were
able to check that the solution obtained was the elastic solution.

Another point that is worth bringing out at this time is the restriction on the choice of
mesh width.

Ordinarily in a solution to a system of equations of this type there is seldom a restriction
on the minimum mesh that is used (other than a financial one). However in the region of
decreasing r,(t), i.e. t > t,, the solution entails taking the sum of two quantities which
are opposite in sign and nearly equal in magnitude, i.e.

N

! dF
[ e-05par= 3 -+ pe—t FCL - FO)

tm i=1
Here dF(¢')/d?’ is positive from t,(t') to t,, and negative from ¢,, to £'(*' > t,).

Hence when too small a mesh is used (in our case 1 x 107 ° sec) the sums may not be
monotonic as they should be and the solution will not converge.

We now reopen the question of the dependence of the solution on the choice of ¢ [ie.
olt,+h) = aft,,)—¢€]. [In theory ¢ = 0 from equation (8)]. However it is better to choose
it non-zero in order to start the calculation off smoothly. If ¢ is chosen to be considerably
smaller than the value oft,)—o(t,,—h) which is a reasonable restriction, the solution
will converge to the “right” answer. (The same answer.) Another point where common
sense must prevail is the manner in which r,(¢) is decreased in the iteration process. If
one insists on saving time by decreasing r,(¢) in large steps then the solution will be crude
to say the least. In our case we took d (defined by r,(¢;) = r,(t,_,)— J) to be consistently
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5lri(ti— )—ry(t;~ ,)] with a starting value of

6 = To[ri(ty) —ry(tw—h))-

The results of calculations made for temperatures ranging from 24°C to 128°C are
shown below. In each case an elastic solution is shown for comparison. This solution is
obtained using the same initial conditions and impacting sphere. The value of G(t, T)
at t = 1 x 107 ° sec and the appropriate temperature as well as a Poisson ratio of 0-3 are
used as a material description for the elastic solutions.

In addition, the amount of error which is introduced by assuming that the relation
ry =\/ (aR) holds for the unloading process is presented.

DISCUSSION OF NUMERICAL RESULTS

Before discussing the numerical results it is important to recall the assumptions and
approximations that led up to these results, (in particular, the manner in which the con-
stitutive relation was obtained). (See Appendix.) Then it will be possible to draw some
general conclusions regarding the comparisons with the experimental results of [6].

The material description of the viscoelastic solid [i.e. G(t), J(t)] was obtained from a
series of free vibration experiments which produced for each temperature a value of
G,(w) and tan &(w). These values were used together with an equation (see Kolsky [7])
which was based on the weak dependence of tan § on frequency to expand the range of
values of G(w). This frequency data was then converted through approximate formulae
[see equations (14)—(18)] to obtain values of G(t) and J(t) from t = 1 usec to 3000 usec.

Even though we have as solutions to the integro-differential equation plots of a(t)
and r,(t) from the beginning to end of the contact problem the only comparison with
experiment that is possible is in the value of the total times of contact and the height to
which the ball rebounds. Table 1 lists these comparisons.

As can be seen from Table 1, the agreement is quite good between the numerical
solution and measured values both in time of contact and rebound height for the lower

TABLE . REBOUND DATA FOR AN % IN. STEEL SPHERE DROPPING ONTO A BLOCK OF P.M.M.

(vy = 70-6 cm/sec)

T, T. measured T calculated h,/ho h,/hgy
(°C) (usec) (usec) % measured 9% calculated
24 220 101
27 230 87
45 224 83
47 231 86
77 262 60
78% 257 77
115 506 64
116 369 38
128 652 55
129 463 24

1287 = \/(Ra) ' 736 41
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temperatures. This is expected since it is at these temperatures that the inaccuracies of
determining the input data are smallest. Correspondingly, it is at the lowest temperature
that the numerical viscoelastic solution is closest to the elastic solution (which has been
proven experimentally).

The curves which show the elastic as well as viscoelastic solution give some idea of the
amount of error that one accepts when an elastic analysis is done on materials which are
only slightly viscoelastic. However, it appears that the equivalent frequency concept [6]
should be fairly useful for determining the dynamic modulus of P.M.M. up to say 55°C
(depending, of course, upon how much error you are willing to accept). At this temperature
the impact is still nearly Hertzian [8].

The fact that for room temperatures the rebound height was greater than 100 per cent
reflects a small inaccuracy in the numerical scheme. However this was most apparent for
the calculations at low temperatures where the curves are steepest. For the higher tem-
peratures the error decreased as reflected in the elastic solutions. These results showed
only about a 1 per cent error in the calculation of the rebound height. The error which
occurred in the calculation of the time of contact was much less.

It should be pointed out that no optimum time interval was sought in determining any
of these curves. The time interval that was used was one which worked reasonably well
over all the temperatures at which we sought solutions and was thus used for convenience.

Some calculations were made to determine the sensitivity of the solution to the mesh
width (At) and the choice of ¢ and é. (See Fig. 9). There was only a slight change in the
solution when we went from At = 2 x 10~ % sec to 1 x 10~ ° sec, but the solution did not
converge for At < 1 sec. For the dependence of the solution on ¢ and ¢ it was found that the
difference was imperceptible if we decreased either by a factor of ¢5. However this does
not say that an unreasonable choice of either ¢ or § would not result in serious error being
introduced.

The solution shown in Fig. 12 sheds some light on the amount of error introduced by
assuming that the relation r = /(Ra) (Solution II) holds for the viscoelastic case. This is
equivalent to forcing the material to stay in contact with the ball during withdrawal.

Here we see that for T = 128° and relatively large damping (but not nearly as high as
would occur closer to the transition region) that the two solutions differ considerably.
How they compare depends upon the variables considered. It is clear that the maximum
depth will be the same in either case. It appears that Solution 11 will always predict a longer
time of contact and a lower rebound than I.

CONCLUSIONS

During the course of this investigation a complicated pair of nonlinear integro-differen-
“tial equations involving hereditary functions have been solved. The solution was shown
to be quite simple as numerical solutions go.

Considering the fact that in solving these equations only rough estimates of time of
contact and height of rebound were sought, the data obtained in the vibration experiments
and used to generate the material properties was adequate. For more accurate results
much more attention must be paid to the material parameters used in the solution as well
as the difference method and choice of mesh width.
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In addition, the numerical solution of both the viscoelastic and elastic problems
showed how the nature of the penetration changed as the temperature and hence the
mechanical properties changed. These results shed some light on the limitation of the use
of the equivalent frequency concept and consequently the limitation of using the ball
bouncing method of dynamic testing.

Finally, for the case of T = 128°C, some quantitative information concerning the
errors introduced by neglecting the difference between the areas of contact in the elastic
and viscoelastic problems is presented.
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APPENDIX
Free Torsional Vibration of Rods of Polymethylmethacrylate (P.M.M.)

Vibration experiments were run on rods of P.M.M. to obtain the viscoelastic functions
u(t)and u~ 1(t) to be used in the numerical solutions previously discussed. Values of G(w, T)
were obtained for temperatures ranging from room temperature to 128°C. From these
values of G(w) using the methods outlined in Ferry [9] (and shown later) we were able to
obtain values of G(t) and J(t) (these are the same as u(t), u~ '(f) presented in Hunter’s
article) to be used in the numerical solution of the rebound problem described earlier.

The specimens were rods 6 in. long and 2 in. and } in. dia. For the larger diameter rod
a circular plate of aluminum < in. thick and 10in. dia. was attached to one end. The
other end of the rod was glued to the frame of the test jig. This combination of dimensions
was chosen to produce high frequency response. (See Fig. 3.) The plate served as an inertial
element as well as a means of introducing the forcing moments. These moments were
created by putting alternating currents through the galvanometer type arrangement
(see Fig. 4) attached on ends opposite of a diameter of the plate. A similar device was also
used as a pickup to record the frequency and decay of the response.

It was important that the moments produced by the drivers were in the same sense
and that they were oriented such as to produce as little flexure of the rod as possible. This
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Fi1G. 4. Driving force arrangement.

became a more serious problem at the higher temperatures since the rigidity of the rod
decreased enormously.

The output of the galvanometer pickup was fed into a dual beam C.R.O. and a picture
was taken of the trace (see Fig. 5). The signal was also fed into a digital counter which
measured and displayed the frequency of the response. The top trace shows the decay of
the motion after the external forces have been discontinued and the bottom, the forcing
signal from the oscillator.

From the photograph (Fig. 5) we are able to obtain the frequency of the free vibration
and its logarithm decrement. By knowing the inertia of the system it is possible to obtain
G(w) from the frequency. From the value of the logarithmic decrement tan 6 is obtained.
(See Ferry [9])

G (@) = (I/b)(1 +A%/An?) (14)
G1(0) = (0IM/b)A/n (15)
tand = G,/G,

where A = logarithmic decrement; I = moment of inertia of disk; w, = resonant fre-
quency; b = form factor

Gl(w) = Glc ln —

<

1+

(16)

2tané w)

G(t) = G(0)—040G ,(0-4w) +0:014G »(10w) (17)
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where w = 1/t and G, is the value of G, at w = w,.
J(t) = sin Ma/MnGlt) (18)

where M is the slope of the doubly logarithmic plot of G(¢).
These calculations then produce the necessary functions to be used in calculating a(r)
and r,(t) for the impact problem.

Experimental Results

The data obtained from the 2 in. dia. bar are shown at the end of the paper.

Figure 5 is an oscilloscope trace showing the manner in which the free vibration decayed
with time.

The logarithmic decrement was obtained by measuring the amplitude of successive
maxima and taking the logarithm of the ratios, i.e.

Xi

A=1In

Xi+t

This was computed for several successive cycles and an average computed and recorded
for this temperature. Figure 7 shows a plot of A vs. temperature and Fig. 8, tan d vs. tem-
perature. (The relative maximum at about 80° is attributed to the response of the Tra-Con
cement which was used to stick the specimen to the frame.) Also G,(w) vs. temperature 1s
shown in Fig. 6.
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Discussion of the Data

Since the data from the larger diameter bar appeared best, only these results were
presented. There were a number of problems which developed in testing the small diameter
specimen which made the results suspect. In particular the large mass attached to the top
of the specimen had to be supported by a bead type chain of very low torsional rigidity.
However at higher temperatures the bar itself had almost no rigidity and thus the question
of the effect of the chain was raised. Also due to lack of rigidity, there were other problems
of flexure of the specimen, wind resistance, etc. However there was fairly good agreement
at the lower temperatures (less than 110°C) which gave us confidence in the data for the
2 in. rod.

It should also be pointed out that it is not correct to use the formulae (14, 15) for cal-
culating values of tan § from the decrement for large values of tan § (or A). Thus for an
accurate measure of damping one must concentrate on the values of A which were obtained
from experiment.

Résumé—La paire d’équations intégro-différentielles non linéaires couplées qui décrivent la résilience d’une
sphére rigide par rapport & une masse semi-infinie viscoélastique sont résolues numériquement. En faisant usage
de données obtenues a partir d’expériences de vibration de torsion libre, le rebondissement d’une balle en acier
sur un bloc de polymére est prédit pour différentes températures. Ces résultats sont comparés 4 des expériences de
rebondissement effectuées sur le méme matériau. La solution viscoélastique est aussi comparée a des solutions
élastiques et 4 une solution approximative. Quelques conclusions sont tirées sur I'usage de la méthode de re-
bondissement comme moyen d’essais dynamiques.

Zusammenfassung—Das gekoppelte Integral-Differential-Gleichungspaar, das den Stoss einer starren Kugel
gegen einen viskoelastischen Halbraum beschreibt, wird numerisch gelést. Indem Daten verwendet werden, die
bei Versuchen mit freien Drehschwingungen erhalten wurden, wird die Riickprallhohe einer Stahlkugel von einem
Polymirblock fiir verschiedene Temperaturen vorausgesagt. Diese Resultate werden mit Versuchsergebnissen
verglichen die mit den gleichen Materialien gemacht wurden. Ferner wird die viskoelastiche Losung mit der
elastischen Losung und mit der Annidherungslsung verglichen. Gewisse Schliisse werden gezogen iiber die
Verwendung der Riickprallmethode zur dynamischen Messung.

AGcrpakT—/laercss YMCIEHHBIA pacyeT CONpPSHKEHHOM Jiaphl HENMMHEHHBIX MHTETpanbHO-gupdepeHLma-
bHBIX YpaBHEHMH#, KOTOpBIE ONHMCHIBAIOT yaap TBEPAOIO MAapHKa B BA3KOYNPYroe IOJYHPOCTPAHCTBO.
Hcnonb3ys pe3yibTaThl IOMYyYEHHbIE U3 3KCIIEPHMEHTOB AN CBOGOMHBIX KPYTHIBHBIX KojieOaHuit upen-
CKa3BIBAETCA OTPaXkeHHe CTAJILHOro uIapuka oT 6Jioka mojMMepa NpM pa3’HbIX TeMraepaTrypax. 3TH pe3yi-
BTAThl CPABHHBAIOTCA C DKCIEPHMEHTAMH Ha OTPaXeHHe NPUBEICHHBIMHU IS 3TOTO XK€ CAMOTO MaTepHana.
Jlanee, CpaBHHBAETCA BA3KO-YIIPYTO€ PELIEHHE C YIPYTHM PEUIEHHEM, 4 TAKXKE C NPUOIIHKEHHBIM PEIICHHEM.
B 3aKJIFOYE€HHH OAIOTCA HEKOTOPBIE BBIBOAbI, KOTODBIE PA3PEILAIOT MCHOJB30BAHHE METOAA OTPAXEHHS B
CMBICJIE THHAMHYECKOTO ONbITA.



